- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Optimistic Transactions and Pessimistic Transactions
The optimistic transaction model commits the transaction directly, and rolls back when there is a conflict. By contrast, the pessimistic transaction model tries to lock the resources that need to be modified before actually committing the transaction, and only starts committing after ensuring that the transaction can be successfully executed.
The optimistic transaction model is suitable for scenarios with low conflict rates, because the direct commit has a high probability of success. But once a transaction conflict occurs, the cost of rollback is relatively high.
The advantage of the pessimistic transaction model is that for scenarios with high conflict rates, the cost of locking ahead is less than the cost of rollback afterwards. Moreover, it can solve the problem that multiple concurrent transactions fail to commit due to conflicts. However, the pessimistic transaction model is not as efficient as the optimistic transaction model in scenarios with low conflict rates.
The pessimistic transaction model is more intuitive and easier to implement on the application side. The optimistic transaction model requires complex application-side retry mechanisms.
The following is an example of a bookshop. It uses an example of buying books to show the pros and cons of optimistic and pessimistic transactions. The process of buying books mainly consists of the following:
- Update the stock quantity
- Create an order
- Make the payment
These operations must either all succeed or all fail. You must ensure that overselling does not happen in the case of concurrent transactions.
Pessimistic transactions
The following code uses two threads to simulate the process that two users buy the same book in a pessimistic transaction mode. There are 10 books left in the bookstore. Bob buys 6 books, and Alice buys 4 books. They complete the orders at nearly the same time. As a result, all books in inventory are sold out.
- Java
- Golang
Because you use multiple threads to simulate the situation that multiple users insert data simultaneously, you need to use a connection object with safe threads. Here use Java's popular connection pool HikariCP for demo.
sql.DB
in Golang is concurrency-safe, so there is no need to import a third-party package.
To adapt TiDB transactions, write a toolkit util according to the following code:
package util
import (
"context"
"database/sql"
)
type TiDBSqlTx struct {
*sql.Tx
conn *sql.Conn
pessimistic bool
}
func TiDBSqlBegin(db *sql.DB, pessimistic bool) (*TiDBSqlTx, error) {
ctx := context.Background()
conn, err := db.Conn(ctx)
if err != nil {
return nil, err
}
if pessimistic {
_, err = conn.ExecContext(ctx, "set @@tidb_txn_mode=?", "pessimistic")
} else {
_, err = conn.ExecContext(ctx, "set @@tidb_txn_mode=?", "optimistic")
}
if err != nil {
return nil, err
}
tx, err := conn.BeginTx(ctx, nil)
if err != nil {
return nil, err
}
return &TiDBSqlTx{
conn: conn,
Tx: tx,
pessimistic: pessimistic,
}, nil
}
func (tx *TiDBSqlTx) Commit() error {
defer tx.conn.Close()
return tx.Tx.Commit()
}
func (tx *TiDBSqlTx) Rollback() error {
defer tx.conn.Close()
return tx.Tx.Rollback()
}
Write a pessimistic transaction example
- Java
- Golang
Configuration file
If you use Maven to manage the package, in the <dependencies>
node in pom.xml
, add the following dependencies to import HikariCP
, and set the packaging target, and the main class of the JAR package startup. The following is an example of pom.xml
.
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.pingcap</groupId>
<artifactId>plain-java-txn</artifactId>
<version>0.0.1</version>
<name>plain-java-jdbc</name>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.2</version>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.28</version>
</dependency>
<dependency>
<groupId>com.zaxxer</groupId>
<artifactId>HikariCP</artifactId>
<version>5.0.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.3.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>com.pingcap.txn.TxnExample</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Coding
Then write the code:
package com.pingcap.txn;
import com.zaxxer.hikari.HikariDataSource;
import java.math.BigDecimal;
import java.sql.*;
import java.util.Arrays;
import java.util.concurrent.*;
public class TxnExample {
public static void main(String[] args) throws SQLException, InterruptedException {
System.out.println(Arrays.toString(args));
int aliceQuantity = 0;
int bobQuantity = 0;
for (String arg: args) {
if (arg.startsWith("ALICE_NUM")) {
aliceQuantity = Integer.parseInt(arg.replace("ALICE_NUM=", ""));
}
if (arg.startsWith("BOB_NUM")) {
bobQuantity = Integer.parseInt(arg.replace("BOB_NUM=", ""));
}
}
HikariDataSource ds = new HikariDataSource();
ds.setJdbcUrl("jdbc:mysql://localhost:4000/bookshop?useServerPrepStmts=true&cachePrepStmts=true");
ds.setUsername("root");
ds.setPassword("");
// prepare data
Connection connection = ds.getConnection();
createBook(connection, 1L, "Designing Data-Intensive Application", "Science & Technology",
Timestamp.valueOf("2018-09-01 00:00:00"), new BigDecimal(100), 10);
createUser(connection, 1L, "Bob", new BigDecimal(10000));
createUser(connection, 2L, "Alice", new BigDecimal(10000));
CountDownLatch countDownLatch = new CountDownLatch(2);
ExecutorService threadPool = Executors.newFixedThreadPool(2);
final int finalBobQuantity = bobQuantity;
threadPool.execute(() -> {
buy(ds, 1, 1000L, 1L, 1L, finalBobQuantity);
countDownLatch.countDown();
});
final int finalAliceQuantity = aliceQuantity;
threadPool.execute(() -> {
buy(ds, 2, 1001L, 1L, 2L, finalAliceQuantity);
countDownLatch.countDown();
});
countDownLatch.await(5, TimeUnit.SECONDS);
}
public static void createUser(Connection connection, Long id, String nickname, BigDecimal balance) throws SQLException {
PreparedStatement insert = connection.prepareStatement(
"INSERT INTO `users` (`id`, `nickname`, `balance`) VALUES (?, ?, ?)");
insert.setLong(1, id);
insert.setString(2, nickname);
insert.setBigDecimal(3, balance);
insert.executeUpdate();
}
public static void createBook(Connection connection, Long id, String title, String type, Timestamp publishedAt, BigDecimal price, Integer stock) throws SQLException {
PreparedStatement insert = connection.prepareStatement(
"INSERT INTO `books` (`id`, `title`, `type`, `published_at`, `price`, `stock`) values (?, ?, ?, ?, ?, ?)");
insert.setLong(1, id);
insert.setString(2, title);
insert.setString(3, type);
insert.setTimestamp(4, publishedAt);
insert.setBigDecimal(5, price);
insert.setInt(6, stock);
insert.executeUpdate();
}
public static void buy (HikariDataSource ds, Integer threadID,
Long orderID, Long bookID, Long userID, Integer quantity) {
String txnComment = "/* txn " + threadID + " */ ";
try (Connection connection = ds.getConnection()) {
try {
connection.setAutoCommit(false);
connection.createStatement().executeUpdate(txnComment + "begin pessimistic");
// waiting for other thread ran the 'begin pessimistic' statement
TimeUnit.SECONDS.sleep(1);
BigDecimal price = null;
// read price of book
PreparedStatement selectBook = connection.prepareStatement(txnComment + "select price from books where id = ? for update");
selectBook.setLong(1, bookID);
ResultSet res = selectBook.executeQuery();
if (!res.next()) {
throw new RuntimeException("book not exist");
} else {
price = res.getBigDecimal("price");
}
// update book
String updateBookSQL = "update `books` set stock = stock - ? where id = ? and stock - ? >= 0";
PreparedStatement updateBook = connection.prepareStatement(txnComment + updateBookSQL);
updateBook.setInt(1, quantity);
updateBook.setLong(2, bookID);
updateBook.setInt(3, quantity);
int affectedRows = updateBook.executeUpdate();
if (affectedRows == 0) {
// stock not enough, rollback
connection.createStatement().executeUpdate(txnComment + "rollback");
return;
}
// insert order
String insertOrderSQL = "insert into `orders` (`id`, `book_id`, `user_id`, `quality`) values (?, ?, ?, ?)";
PreparedStatement insertOrder = connection.prepareStatement(txnComment + insertOrderSQL);
insertOrder.setLong(1, orderID);
insertOrder.setLong(2, bookID);
insertOrder.setLong(3, userID);
insertOrder.setInt(4, quantity);
insertOrder.executeUpdate();
// update user
String updateUserSQL = "update `users` set `balance` = `balance` - ? where id = ?";
PreparedStatement updateUser = connection.prepareStatement(txnComment + updateUserSQL);
updateUser.setBigDecimal(1, price.multiply(new BigDecimal(quantity)));
updateUser.setLong(2, userID);
updateUser.executeUpdate();
connection.createStatement().executeUpdate(txnComment + "commit");
} catch (Exception e) {
connection.createStatement().executeUpdate(txnComment + "rollback");
e.printStackTrace();
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
Write a helper.go
file that contains the required database operations:
package main
import (
"context"
"database/sql"
"fmt"
"time"
"github.com/go-sql-driver/mysql"
"github.com/pingcap-inc/tidb-example-golang/util"
"github.com/shopspring/decimal"
)
type TxnFunc func(txn *util.TiDBSqlTx) error
const (
ErrWriteConflict = 9007 // Transactions in TiKV encounter write conflicts.
ErrInfoSchemaChanged = 8028 // table schema changes
ErrForUpdateCantRetry = 8002 // "SELECT FOR UPDATE" commit conflict
ErrTxnRetryable = 8022 // The transaction commit fails and has been rolled back
)
const retryTimes = 5
var retryErrorCodeSet = map[uint16]interface{}{
ErrWriteConflict: nil,
ErrInfoSchemaChanged: nil,
ErrForUpdateCantRetry: nil,
ErrTxnRetryable: nil,
}
func runTxn(db *sql.DB, optimistic bool, optimisticRetryTimes int, txnFunc TxnFunc) {
txn, err := util.TiDBSqlBegin(db, !optimistic)
if err != nil {
panic(err)
}
err = txnFunc(txn)
if err != nil {
txn.Rollback()
if mysqlErr, ok := err.(*mysql.MySQLError); ok && optimistic && optimisticRetryTimes != 0 {
if _, retryableError := retryErrorCodeSet[mysqlErr.Number]; retryableError {
fmt.Printf("[runTxn] got a retryable error, rest time: %d\n", optimisticRetryTimes-1)
runTxn(db, optimistic, optimisticRetryTimes-1, txnFunc)
return
}
}
fmt.Printf("[runTxn] got an error, rollback: %+v\n", err)
} else {
err = txn.Commit()
if mysqlErr, ok := err.(*mysql.MySQLError); ok && optimistic && optimisticRetryTimes != 0 {
if _, retryableError := retryErrorCodeSet[mysqlErr.Number]; retryableError {
fmt.Printf("[runTxn] got a retryable error, rest time: %d\n", optimisticRetryTimes-1)
runTxn(db, optimistic, optimisticRetryTimes-1, txnFunc)
return
}
}
if err == nil {
fmt.Println("[runTxn] commit success")
}
}
}
func prepareData(db *sql.DB, optimistic bool) {
runTxn(db, optimistic, retryTimes, func(txn *util.TiDBSqlTx) error {
publishedAt, err := time.Parse("2006-01-02 15:04:05", "2018-09-01 00:00:00")
if err != nil {
return err
}
if err = createBook(txn, 1, "Designing Data-Intensive Application",
"Science & Technology", publishedAt, decimal.NewFromInt(100), 10); err != nil {
return err
}
if err = createUser(txn, 1, "Bob", decimal.NewFromInt(10000)); err != nil {
return err
}
if err = createUser(txn, 2, "Alice", decimal.NewFromInt(10000)); err != nil {
return err
}
return nil
})
}
func buyPessimistic(db *sql.DB, goroutineID, orderID, bookID, userID, amount int) {
txnComment := fmt.Sprintf("/* txn %d */ ", goroutineID)
if goroutineID != 1 {
txnComment = "\t" + txnComment
}
fmt.Printf("\nuser %d try to buy %d books(id: %d)\n", userID, amount, bookID)
runTxn(db, false, retryTimes, func(txn *util.TiDBSqlTx) error {
time.Sleep(time.Second)
// read the price of book
selectBookForUpdate := "select `price` from books where id = ? for update"
bookRows, err := txn.Query(selectBookForUpdate, bookID)
if err != nil {
return err
}
fmt.Println(txnComment + selectBookForUpdate + " successful")
defer bookRows.Close()
price := decimal.NewFromInt(0)
if bookRows.Next() {
err = bookRows.Scan(&price)
if err != nil {
return err
}
} else {
return fmt.Errorf("book ID not exist")
}
bookRows.Close()
// update book
updateStock := "update `books` set stock = stock - ? where id = ? and stock - ? >= 0"
result, err := txn.Exec(updateStock, amount, bookID, amount)
if err != nil {
return err
}
fmt.Println(txnComment + updateStock + " successful")
affected, err := result.RowsAffected()
if err != nil {
return err
}
if affected == 0 {
return fmt.Errorf("stock not enough, rollback")
}
// insert order
insertOrder := "insert into `orders` (`id`, `book_id`, `user_id`, `quality`) values (?, ?, ?, ?)"
if _, err := txn.Exec(insertOrder,
orderID, bookID, userID, amount); err != nil {
return err
}
fmt.Println(txnComment + insertOrder + " successful")
// update user
updateUser := "update `users` set `balance` = `balance` - ? where id = ?"
if _, err := txn.Exec(updateUser,
price.Mul(decimal.NewFromInt(int64(amount))), userID); err != nil {
return err
}
fmt.Println(txnComment + updateUser + " successful")
return nil
})
}
func buyOptimistic(db *sql.DB, goroutineID, orderID, bookID, userID, amount int) {
txnComment := fmt.Sprintf("/* txn %d */ ", goroutineID)
if goroutineID != 1 {
txnComment = "\t" + txnComment
}
fmt.Printf("\nuser %d try to buy %d books(id: %d)\n", userID, amount, bookID)
runTxn(db, true, retryTimes, func(txn *util.TiDBSqlTx) error {
time.Sleep(time.Second)
// read the price and stock of book
selectBookForUpdate := "select `price`, `stock` from books where id = ? for update"
bookRows, err := txn.Query(selectBookForUpdate, bookID)
if err != nil {
return err
}
fmt.Println(txnComment + selectBookForUpdate + " successful")
defer bookRows.Close()
price, stock := decimal.NewFromInt(0), 0
if bookRows.Next() {
err = bookRows.Scan(&price, &stock)
if err != nil {
return err
}
} else {
return fmt.Errorf("book ID not exist")
}
bookRows.Close()
if stock < amount {
return fmt.Errorf("book not enough")
}
// update book
updateStock := "update `books` set stock = stock - ? where id = ? and stock - ? >= 0"
result, err := txn.Exec(updateStock, amount, bookID, amount)
if err != nil {
return err
}
fmt.Println(txnComment + updateStock + " successful")
affected, err := result.RowsAffected()
if err != nil {
return err
}
if affected == 0 {
return fmt.Errorf("stock not enough, rollback")
}
// insert order
insertOrder := "insert into `orders` (`id`, `book_id`, `user_id`, `quality`) values (?, ?, ?, ?)"
if _, err := txn.Exec(insertOrder,
orderID, bookID, userID, amount); err != nil {
return err
}
fmt.Println(txnComment + insertOrder + " successful")
// update user
updateUser := "update `users` set `balance` = `balance` - ? where id = ?"
if _, err := txn.Exec(updateUser,
price.Mul(decimal.NewFromInt(int64(amount))), userID); err != nil {
return err
}
fmt.Println(txnComment + updateUser + " successful")
return nil
})
}
func createBook(txn *util.TiDBSqlTx, id int, title, bookType string,
publishedAt time.Time, price decimal.Decimal, stock int) error {
_, err := txn.ExecContext(context.Background(),
"INSERT INTO `books` (`id`, `title`, `type`, `published_at`, `price`, `stock`) values (?, ?, ?, ?, ?, ?)",
id, title, bookType, publishedAt, price, stock)
return err
}
func createUser(txn *util.TiDBSqlTx, id int, nickname string, balance decimal.Decimal) error {
_, err := txn.ExecContext(context.Background(),
"INSERT INTO `users` (`id`, `nickname`, `balance`) VALUES (?, ?, ?)",
id, nickname, balance)
return err
}
Then write a txn.go
with a main
function to call helper.go
and handle the incoming command line arguments:
package main
import (
"database/sql"
"flag"
"fmt"
"sync"
)
func main() {
optimistic, alice, bob := parseParams()
openDB("mysql", "root:@tcp(127.0.0.1:4000)/bookshop?charset=utf8mb4", func(db *sql.DB) {
prepareData(db, optimistic)
buy(db, optimistic, alice, bob)
})
}
func buy(db *sql.DB, optimistic bool, alice, bob int) {
buyFunc := buyOptimistic
if !optimistic {
buyFunc = buyPessimistic
}
wg := sync.WaitGroup{}
wg.Add(1)
go func() {
defer wg.Done()
buyFunc(db, 1, 1000, 1, 1, bob)
}()
wg.Add(1)
go func() {
defer wg.Done()
buyFunc(db, 2, 1001, 1, 2, alice)
}()
wg.Wait()
}
func openDB(driverName, dataSourceName string, runnable func(db *sql.DB)) {
db, err := sql.Open(driverName, dataSourceName)
if err != nil {
panic(err)
}
defer db.Close()
runnable(db)
}
func parseParams() (optimistic bool, alice, bob int) {
flag.BoolVar(&optimistic, "o", false, "transaction is optimistic")
flag.IntVar(&alice, "a", 4, "Alice bought num")
flag.IntVar(&bob, "b", 6, "Bob bought num")
flag.Parse()
fmt.Println(optimistic, alice, bob)
return optimistic, alice, bob
}
The Golang example already includes optimistic transactions.
An example that does not involve overselling
Run the sample program:
- Java
- Golang
mvn clean package
java -jar target/plain-java-txn-0.0.1-jar-with-dependencies.jar ALICE_NUM=4 BOB_NUM=6
go build -o bin/txn
./bin/txn -a 4 -b 6
SQL logs:
/* txn 1 */ BEGIN PESSIMISTIC
/* txn 2 */ BEGIN PESSIMISTIC
/* txn 2 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 2 */ UPDATE `books` SET `stock` = `stock` - 4 WHERE `id` = 1 AND `stock` - 4 >= 0
/* txn 2 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1001, 1, 1, 4)
/* txn 2 */ UPDATE `users` SET `balance` = `balance` - 400.0 WHERE `id` = 2
/* txn 2 */ COMMIT
/* txn 1 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 1 */ UPDATE `books` SET `stock` = `stock` - 6 WHERE `id` = 1 AND `stock` - 6 >= 0
/* txn 1 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1000, 1, 1, 6)
/* txn 1 */ UPDATE `users` SET `balance` = `balance` - 600.0 WHERE `id` = 1
/* txn 1 */ COMMIT
Finally, check that the order is created, the user balance is deducted, and the book inventory is deducted as expected.
mysql> SELECT * FROM `books`;
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| id | title | type | published_at | stock | price |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| 1 | Designing Data-Intensive Application | Science & Technology | 2018-09-01 00:00:00 | 0 | 100.00 |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
1 row in set (0.00 sec)
mysql> SELECT * FROM orders;
+------+---------+---------+---------+---------------------+
| id | book_id | user_id | quality | ordered_at |
+------+---------+---------+---------+---------------------+
| 1000 | 1 | 1 | 6 | 2022-04-19 10:58:12 |
| 1001 | 1 | 1 | 4 | 2022-04-19 10:58:11 |
+------+---------+---------+---------+---------------------+
2 rows in set (0.01 sec)
mysql> SELECT * FROM users;
+----+---------+----------+
| id | balance | nickname |
+----+---------+----------+
| 1 | 9400.00 | Bob |
| 2 | 9600.00 | Alice |
+----+---------+----------+
2 rows in set (0.00 sec)
An example that prevents overselling
The task in this example is more challenging. Suppose there are 10 books left in stock. Bob buys 7 books, Alice buys 4 books, and they place orders almost at the same time. What will happen? You can reuse the code from the previous example to solve this challenge, and change Bob's purchase quantity from 6 to 7.
Run the sample program:
- Java
- Golang
mvn clean package
java -jar target/plain-java-txn-0.0.1-jar-with-dependencies.jar ALICE_NUM=4 BOB_NUM=7
go build -o bin/txn
./bin/txn -a 4 -b 7
/* txn 1 */ BEGIN PESSIMISTIC
/* txn 2 */ BEGIN PESSIMISTIC
/* txn 2 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 2 */ UPDATE `books` SET `stock` = `stock` - 4 WHERE `id` = 1 AND `stock` - 4 >= 0
/* txn 2 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) values (1001, 1, 1, 4)
/* txn 2 */ UPDATE `users` SET `balance` = `balance` - 400.0 WHERE `id` = 2
/* txn 2 */ COMMIT
/* txn 1 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 1 */ UPDATE `books` SET `stock` = `stock` - 7 WHERE `id` = 1 AND `stock` - 7 >= 0
/* txn 1 */ ROLLBACK
Since txn 2
preemptively gets the lock resource and updates the stock, the return value of affected_rows
in txn 1
is 0, and it enters the rollback
process.
Let's check the order creation, user balance deduction, and book inventory deduction. Alice successfully ordered 4 books, Bob failed to order 7 books, and the remaining 6 books are in stock as expected.
mysql> SELECT * FROM books;
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| id | title | type | published_at | stock | price |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| 1 | Designing Data-Intensive Application | Science & Technology | 2018-09-01 00:00:00 | 6 | 100.00 |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
1 row in set (0.00 sec)
mysql> SELECT * FROM orders;
+------+---------+---------+---------+---------------------+
| id | book_id | user_id | quality | ordered_at |
+------+---------+---------+---------+---------------------+
| 1001 | 1 | 1 | 4 | 2022-04-19 11:03:03 |
+------+---------+---------+---------+---------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM users;
+----+----------+----------+
| id | balance | nickname |
+----+----------+----------+
| 1 | 10000.00 | Bob |
| 2 | 9600.00 | Alice |
+----+----------+----------+
2 rows in set (0.01 sec)
Optimistic transactions
The following code uses two threads to simulate the process that two users buy the same book in an optimistic transaction, just like the pessimistic transaction example. There are 10 books left in inventory. Bob buys 6 and Alice buys 4. They complete the order at about the same time. In the end, no books are left in inventory.
Write an optimistic transaction example
- Java
- Golang
Coding
package com.pingcap.txn.optimistic;
import com.zaxxer.hikari.HikariDataSource;
import java.math.BigDecimal;
import java.sql.*;
import java.util.Arrays;
import java.util.concurrent.*;
public class TxnExample {
public static void main(String[] args) throws SQLException, InterruptedException {
System.out.println(Arrays.toString(args));
int aliceQuantity = 0;
int bobQuantity = 0;
for (String arg: args) {
if (arg.startsWith("ALICE_NUM")) {
aliceQuantity = Integer.parseInt(arg.replace("ALICE_NUM=", ""));
}
if (arg.startsWith("BOB_NUM")) {
bobQuantity = Integer.parseInt(arg.replace("BOB_NUM=", ""));
}
}
HikariDataSource ds = new HikariDataSource();
ds.setJdbcUrl("jdbc:mysql://localhost:4000/bookshop?useServerPrepStmts=true&cachePrepStmts=true");
ds.setUsername("root");
ds.setPassword("");
// prepare data
Connection connection = ds.getConnection();
createBook(connection, 1L, "Designing Data-Intensive Application", "Science & Technology",
Timestamp.valueOf("2018-09-01 00:00:00"), new BigDecimal(100), 10);
createUser(connection, 1L, "Bob", new BigDecimal(10000));
createUser(connection, 2L, "Alice", new BigDecimal(10000));
CountDownLatch countDownLatch = new CountDownLatch(2);
ExecutorService threadPool = Executors.newFixedThreadPool(2);
final int finalBobQuantity = bobQuantity;
threadPool.execute(() -> {
buy(ds, 1, 1000L, 1L, 1L, finalBobQuantity, 5);
countDownLatch.countDown();
});
final int finalAliceQuantity = aliceQuantity;
threadPool.execute(() -> {
buy(ds, 2, 1001L, 1L, 2L, finalAliceQuantity, 5);
countDownLatch.countDown();
});
countDownLatch.await(5, TimeUnit.SECONDS);
}
public static void createUser(Connection connection, Long id, String nickname, BigDecimal balance) throws SQLException {
PreparedStatement insert = connection.prepareStatement(
"INSERT INTO `users` (`id`, `nickname`, `balance`) VALUES (?, ?, ?)");
insert.setLong(1, id);
insert.setString(2, nickname);
insert.setBigDecimal(3, balance);
insert.executeUpdate();
}
public static void createBook(Connection connection, Long id, String title, String type, Timestamp publishedAt, BigDecimal price, Integer stock) throws SQLException {
PreparedStatement insert = connection.prepareStatement(
"INSERT INTO `books` (`id`, `title`, `type`, `published_at`, `price`, `stock`) values (?, ?, ?, ?, ?, ?)");
insert.setLong(1, id);
insert.setString(2, title);
insert.setString(3, type);
insert.setTimestamp(4, publishedAt);
insert.setBigDecimal(5, price);
insert.setInt(6, stock);
insert.executeUpdate();
}
public static void buy (HikariDataSource ds, Integer threadID, Long orderID, Long bookID,
Long userID, Integer quantity, Integer retryTimes) {
String txnComment = "/* txn " + threadID + " */ ";
try (Connection connection = ds.getConnection()) {
try {
connection.setAutoCommit(false);
connection.createStatement().executeUpdate(txnComment + "begin optimistic");
// waiting for other thread ran the 'begin optimistic' statement
TimeUnit.SECONDS.sleep(1);
BigDecimal price = null;
// read price of book
PreparedStatement selectBook = connection.prepareStatement(txnComment + "SELECT * FROM books where id = ? for update");
selectBook.setLong(1, bookID);
ResultSet res = selectBook.executeQuery();
if (!res.next()) {
throw new RuntimeException("book not exist");
} else {
price = res.getBigDecimal("price");
int stock = res.getInt("stock");
if (stock < quantity) {
throw new RuntimeException("book not enough");
}
}
// update book
String updateBookSQL = "update `books` set stock = stock - ? where id = ? and stock - ? >= 0";
PreparedStatement updateBook = connection.prepareStatement(txnComment + updateBookSQL);
updateBook.setInt(1, quantity);
updateBook.setLong(2, bookID);
updateBook.setInt(3, quantity);
updateBook.executeUpdate();
// insert order
String insertOrderSQL = "insert into `orders` (`id`, `book_id`, `user_id`, `quality`) values (?, ?, ?, ?)";
PreparedStatement insertOrder = connection.prepareStatement(txnComment + insertOrderSQL);
insertOrder.setLong(1, orderID);
insertOrder.setLong(2, bookID);
insertOrder.setLong(3, userID);
insertOrder.setInt(4, quantity);
insertOrder.executeUpdate();
// update user
String updateUserSQL = "update `users` set `balance` = `balance` - ? where id = ?";
PreparedStatement updateUser = connection.prepareStatement(txnComment + updateUserSQL);
updateUser.setBigDecimal(1, price.multiply(new BigDecimal(quantity)));
updateUser.setLong(2, userID);
updateUser.executeUpdate();
connection.createStatement().executeUpdate(txnComment + "commit");
} catch (Exception e) {
connection.createStatement().executeUpdate(txnComment + "rollback");
System.out.println("error occurred: " + e.getMessage());
if (e instanceof SQLException sqlException) {
switch (sqlException.getErrorCode()) {
// You can get all error codes at https://docs.pingcap.com/tidb/stable/error-codes
case 9007: // Transactions in TiKV encounter write conflicts.
case 8028: // table schema changes
case 8002: // "SELECT FOR UPDATE" commit conflict
case 8022: // The transaction commit fails and has been rolled back
if (retryTimes != 0) {
System.out.println("rest " + retryTimes + " times. retry for " + e.getMessage());
buy(ds, threadID, orderID, bookID, userID, quantity, retryTimes - 1);
}
}
}
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
Configuration changes
Change the startup class in pom.xml
:
<mainClass>com.pingcap.txn.TxnExample</mainClass>
Change it to the following to point to the optimistic transaction example.
<mainClass>com.pingcap.txn.optimistic.TxnExample</mainClass>
The Golang example in the Write a pessimistic transaction example section already supports optimistic transactions and can be used directly without changes.
An example that does not involve overselling
Run the sample program:
- Java
- Golang
mvn clean package
java -jar target/plain-java-txn-0.0.1-jar-with-dependencies.jar ALICE_NUM=4 BOB_NUM=6
go build -o bin/txn
./bin/txn -a 4 -b 6 -o true
SQL statement execution process:
/* txn 2 */ BEGIN OPTIMISTIC
/* txn 1 */ BEGIN OPTIMISTIC
/* txn 2 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 2 */ UPDATE `books` SET `stock` = `stock` - 4 WHERE `id` = 1 AND `stock` - 4 >= 0
/* txn 2 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1001, 1, 1, 4)
/* txn 2 */ UPDATE `users` SET `balance` = `balance` - 400.0 WHERE `id` = 2
/* txn 2 */ COMMIT
/* txn 1 */ SELECT * FROM `books` WHERE `id` = 1 for UPDATE
/* txn 1 */ UPDATE `books` SET `stock` = `stock` - 6 WHERE `id` = 1 AND `stock` - 6 >= 0
/* txn 1 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1000, 1, 1, 6)
/* txn 1 */ UPDATE `users` SET `balance` = `balance` - 600.0 WHERE `id` = 1
retry 1 times for 9007 Write conflict, txnStartTS=432618733006225412, conflictStartTS=432618733006225411, conflictCommitTS=432618733006225414, key={tableID=126, handle=1} primary={tableID=114, indexID=1, indexValues={1, 1000, }} [try again later]
/* txn 1 */ BEGIN OPTIMISTIC
/* txn 1 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 1 */ UPDATE `books` SET `stock` = `stock` - 6 WHERE `id` = 1 AND `stock` - 6 >= 0
/* txn 1 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1000, 1, 1, 6)
/* txn 1 */ UPDATE `users` SET `balance` = `balance` - 600.0 WHERE `id` = 1
/* txn 1 */ COMMIT
In the optimistic transaction mode, because the intermediate state is not necessarily correct, it is not possible to judge whether a statement is successfully executed through affected_rows
as in the pessimistic transaction mode. You need to regard the transaction as a whole, and judge whether the current transaction has a write conflict by checking whether the final COMMIT
statement returns an exception.
As you can see from the above SQL log, because two transactions are executed concurrently and the same record is modified, a 9007 Write conflict
exception is thrown after txn 1
COMMIT. For write conflicts in the optimistic transaction mode, you can safely retry on the application side. After one retry, the data is committed successfully. The final execution result is as expected:
mysql> SELECT * FROM books;
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| id | title | type | published_at | stock | price |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| 1 | Designing Data-Intensive Application | Science & Technology | 2018-09-01 00:00:00 | 0 | 100.00 |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
1 row in set (0.01 sec)
mysql> SELECT * FROM orders;
+------+---------+---------+---------+---------------------+
| id | book_id | user_id | quality | ordered_at |
+------+---------+---------+---------+---------------------+
| 1000 | 1 | 1 | 6 | 2022-04-19 03:18:19 |
| 1001 | 1 | 1 | 4 | 2022-04-19 03:18:17 |
+------+---------+---------+---------+---------------------+
2 rows in set (0.01 sec)
mysql> SELECT * FROM users;
+----+---------+----------+
| id | balance | nickname |
+----+---------+----------+
| 1 | 9400.00 | Bob |
| 2 | 9600.00 | Alice |
+----+---------+----------+
2 rows in set (0.00 sec)
An example that prevents overselling
This section describes an optimistic transaction example that prevents overselling. Suppose there are 10 books left in inventory. Bob buys 7 books,and Alice buys 4 books. They place orders almost at the same time. What will happen? You can reuse the code from the optimistic transaction example to address this requirement. Change Bob's purchases from 6 to 7.
Run the sample program:
- Java
- Golang
mvn clean package
java -jar target/plain-java-txn-0.0.1-jar-with-dependencies.jar ALICE_NUM=4 BOB_NUM=7
go build -o bin/txn
./bin/txn -a 4 -b 7 -o true
/* txn 1 */ BEGIN OPTIMISTIC
/* txn 2 */ BEGIN OPTIMISTIC
/* txn 2 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 2 */ UPDATE `books` SET `stock` = `stock` - 4 WHERE `id` = 1 AND `stock` - 4 >= 0
/* txn 2 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1001, 1, 1, 4)
/* txn 2 */ UPDATE `users` SET `balance` = `balance` - 400.0 WHERE `id` = 2
/* txn 2 */ COMMIT
/* txn 1 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
/* txn 1 */ UPDATE `books` SET `stock` = `stock` - 7 WHERE `id` = 1 AND `stock` - 7 >= 0
/* txn 1 */ INSERT INTO `orders` (`id`, `book_id`, `user_id`, `quality`) VALUES (1000, 1, 1, 7)
/* txn 1 */ UPDATE `users` SET `balance` = `balance` - 700.0 WHERE `id` = 1
retry 1 times for 9007 Write conflict, txnStartTS=432619094333980675, conflictStartTS=432619094333980676, conflictCommitTS=432619094333980678, key={tableID=126, handle=1} primary={tableID=114, indexID=1, indexValues={1, 1000, }} [try again later]
/* txn 1 */ BEGIN OPTIMISTIC
/* txn 1 */ SELECT * FROM `books` WHERE `id` = 1 FOR UPDATE
Fail -> out of stock
/* txn 1 */ ROLLBACK
You can see from the above SQL log that txn 1
is retried on the application side due to a write conflict in the first execution. By comparing the latest snapshots, you can find that the stock is running out. The application side throws out of stock
, and ends abnormally.
mysql> SELECT * FROM books;
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| id | title | type | published_at | stock | price |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
| 1 | Designing Data-Intensive Application | Science & Technology | 2018-09-01 00:00:00 | 6 | 100.00 |
+----+--------------------------------------+----------------------+---------------------+-------+--------+
1 row in set (0.00 sec)
mysql> SELECT * FROM orders;
+------+---------+---------+---------+---------------------+
| id | book_id | user_id | quality | ordered_at |
+------+---------+---------+---------+---------------------+
| 1001 | 1 | 1 | 4 | 2022-04-19 03:41:16 |
+------+---------+---------+---------+---------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM users;
+----+----------+----------+
| id | balance | nickname |
+----+----------+----------+
| 1 | 10000.00 | Bob |
| 2 | 9600.00 | Alice |
+----+----------+----------+
2 rows in set (0.00 sec)