- Docs Home
- About TiDB Cloud
- Get Started
- Develop Applications
- Overview
- Quick Start
- Build a TiDB Developer Cluster
- CRUD SQL in TiDB
- Build a Simple CRUD App with TiDB
- Example Applications
- Connect to TiDB
- Design Database Schema
- Write Data
- Read Data
- Transaction
- Optimize
- Troubleshoot
- Reference
- Cloud Native Development Environment
- Manage Cluster
- Plan Your Cluster
- Create a TiDB Cluster
- Connect to Your TiDB Cluster
- Set Up VPC Peering Connections
- Use an HTAP Cluster with TiFlash
- Scale a TiDB Cluster
- Upgrade a TiDB Cluster
- Delete a TiDB Cluster
- Use TiDB Cloud API (Beta)
- Migrate Data
- Import Sample Data
- Migrate Data into TiDB
- Configure Amazon S3 Access and GCS Access
- Migrate from MySQL-Compatible Databases
- Migrate Incremental Data from MySQL-Compatible Databases
- Migrate from Amazon Aurora MySQL in Bulk
- Import or Migrate from Amazon S3 or GCS to TiDB Cloud
- Import CSV Files from Amazon S3 or GCS into TiDB Cloud
- Import Apache Parquet Files from Amazon S3 or GCS into TiDB Cloud
- Troubleshoot Access Denied Errors during Data Import from Amazon S3
- Export Data from TiDB
- Back Up and Restore
- Monitor and Alert
- Overview
- Built-in Monitoring
- Built-in Alerting
- Third-Party Monitoring Integrations
- Tune Performance
- Overview
- Analyze Performance
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- TiKV Follower Read
- Coprocessor Cache
- Garbage Collection (GC)
- Tune TiFlash performance
- Manage User Access
- Billing
- Reference
- TiDB Cluster Architecture
- TiDB Cloud Cluster Limits and Quotas
- TiDB Limitations
- SQL
- Explore SQL with TiDB
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER TABLE
ALTER TABLE COMPACT
ALTER USER
ANALYZE TABLE
BATCH
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Locking Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Table Attributes
- Transactions
- Views
- Partitioning
- Temporary Tables
- Cached Tables
- Character Set and Collation
- Read Historical Data
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_INFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
KEY_COLUMN_USAGE
PARTITIONS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
- System Variables
- API Reference
- Storage Engines
- Dumpling
- Table Filter
- Troubleshoot Inconsistency Between Data and Indexes
- FAQs
- Release Notes
- Support
- Glossary
Query Data from a Single Table
This document describes how to use SQL and various programming languages to query data from a single table in a database.
Before you begin
The following content will take the Bookshop application as an example to show how to query data from a single table in TiDB.
Before querying data, make sure that you have completed the following steps:
- Build a TiDB cluster (using TiDB Cloud or TiUP is recommended).
- Build a TiDB cluster using TiDB Cloud.
Execute a simple query
In the database of the Bookshop application, the authors
table stores the basic information of authors. You can use the SELECT ... FROM ...
statement to query data from the database.
- SQL
- Java
Execute the following SQL statement in a MySQL client:
SELECT id, name FROM authors;
The output is as follows:
+------------+--------------------------+
| id | name |
+------------+--------------------------+
| 6357 | Adelle Bosco |
| 345397 | Chanelle Koepp |
| 807584 | Clementina Ryan |
| 839921 | Gage Huel |
| 850070 | Ray Armstrong |
| 850362 | Ford Waelchi |
| 881210 | Jayme Gutkowski |
| 1165261 | Allison Kuvalis |
| 1282036 | Adela Funk |
...
| 4294957408 | Lyla Nitzsche |
+------------+--------------------------+
20000 rows in set (0.05 sec)
In Java, authors' basic information can be stored by declaring a class Author
. You should choose appropriate Java data types according to the type and value range in the database. For example:
- Use a variable of type
Int
to store data of typeint
. - Use a variable of type
Long
to store data of typebigint
. - Use a variable of type
Short
to store data of typetinyint
. - Use a variable of type
String
to store data of typevarchar
. - ...
public class Author {
private Long id;
private String name;
private Short gender;
private Short birthYear;
private Short deathYear;
public Author() {}
// Skip the getters and setters.
}
public class AuthorDAO {
// Omit initialization of instance variables...
public List<Author> getAuthors() throws SQLException {
List<Author> authors = new ArrayList<>();
try (Connection conn = ds.getConnection()) {
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT id, name FROM authors");
while (rs.next()) {
Author author = new Author();
author.setId( rs.getLong("id"));
author.setName(rs.getString("name"));
authors.add(author);
}
}
return authors;
}
}
- After connecting to TiDB using the JDBC driver, you can create a
Statement
object withconn.createStatus()
. - Then call
stmt.executeQuery("query_sql")
to initiate a database query request to TiDB. - The query results will be stored in a
ResultSet
object. By traversingResultSet
, the returned results can be mapped to theAuthor
object.
Filter results
You can use the WHERE
statement to filter query results.
For example, the following command will query authors who were born in 1998 among all authors:
- SQL
- Java
Add filter conditions in the WHERE
statement:
SELECT * FROM authors WHERE birth_year = 1998;
In Java, you can use the same SQL to handle data query requests with dynamic parameters.
This can be done by concatenating parameters into a SQL statement. However, this method will pose a potential SQL Injection risk to the security of the application.
To deal with such queries, use a prepared statement instead of a normal statement.
public List<Author> getAuthorsByBirthYear(Short birthYear) throws SQLException {
List<Author> authors = new ArrayList<>();
try (Connection conn = ds.getConnection()) {
PreparedStatement stmt = conn.prepareStatement("""
SELECT * FROM authors WHERE birth_year = ?;
""");
stmt.setShort(1, birthYear);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {
Author author = new Author();
author.setId( rs.getLong("id"));
author.setName(rs.getString("name"));
authors.add(author);
}
}
return authors;
}
Sort results
With the ORDER BY
statement, you can sort query results.
For example, the following SQL statement is to get a list of the youngest authors by sorting the authors
table in descending order (DESC
) according to the birth_year
column.
SELECT id, name, birth_year
FROM authors
ORDER BY birth_year DESC;
The result is as follows:
+-----------+------------------------+------------+
| id | name | birth_year |
+-----------+------------------------+------------+
| 83420726 | Terrance Dach | 2000 |
| 57938667 | Margarita Christiansen | 2000 |
| 77441404 | Otto Dibbert | 2000 |
| 61338414 | Danial Cormier | 2000 |
| 49680887 | Alivia Lemke | 2000 |
| 45460101 | Itzel Cummings | 2000 |
| 38009380 | Percy Hodkiewicz | 2000 |
| 12943560 | Hulda Hackett | 2000 |
| 1294029 | Stanford Herman | 2000 |
| 111453184 | Jeffrey Brekke | 2000 |
...
300000 rows in set (0.23 sec)
Limit the number of query results
You can use the LIMIT
statement to limit the number of query results.
SELECT id, name, birth_year
FROM authors
ORDER BY birth_year DESC
LIMIT 10;
The result is as follows:
+-----------+------------------------+------------+
| id | name | birth_year |
+-----------+------------------------+------------+
| 83420726 | Terrance Dach | 2000 |
| 57938667 | Margarita Christiansen | 2000 |
| 77441404 | Otto Dibbert | 2000 |
| 61338414 | Danial Cormier | 2000 |
| 49680887 | Alivia Lemke | 2000 |
| 45460101 | Itzel Cummings | 2000 |
| 38009380 | Percy Hodkiewicz | 2000 |
| 12943560 | Hulda Hackett | 2000 |
| 1294029 | Stanford Herman | 2000 |
| 111453184 | Jeffrey Brekke | 2000 |
+-----------+------------------------+------------+
10 rows in set (0.11 sec)
With the LIMIT
statement, the query time is significantly reduced from 0.23 sec
to 0.11 sec
in this example. For more information, see TopN and Limit.
Aggregate queries
To have a better understanding of the overall data situation, you can use the GROUP BY
statement to aggregate query results.
For example, if you want to know which years there are more authors born, you can group the authors
table by the birth_year
column, and then count for each year:
SELECT birth_year, COUNT (DISTINCT id) AS author_count
FROM authors
GROUP BY birth_year
ORDER BY author_count DESC;
The result is as follows:
+------------+--------------+
| birth_year | author_count |
+------------+--------------+
| 1932 | 317 |
| 1947 | 290 |
| 1939 | 282 |
| 1935 | 289 |
| 1968 | 291 |
| 1962 | 261 |
| 1961 | 283 |
| 1986 | 289 |
| 1994 | 280 |
...
| 1972 | 306 |
+------------+--------------+
71 rows in set (0.00 sec)
In addition to the COUNT
function, TiDB also supports other aggregate functions. For more information, see Aggregate (GROUP BY) Functions.